Cayley Graph Techniques for Permutation Routing on Bus Interconnection Networks

نویسندگان

  • Gene Cooperman
  • Larry Finkelstein
چکیده

Cayley graphs and elementary group theory are used to eeciently nd minimum length permutation routes in a bus interconnection network. Cayley graphs have been used extensively to design interconnection networks and provide a natural setting for studying point-to-point routing 1, 2, 3, 4], but the technique has not been widely used for the more important problem of permutation routing. This is due to the potentially explosive growth in both the size of the graph and the number of generating permutations, referred to as one-step permutation routes, used to deene the underlying graph. This paper describes a method for moderating that growth, using techniques from 6, 7], and applies that method to a model of bus interconnection networks. Some techniques from 6] are rst reviewed. They show how the existence of a natural set of graph automorphisms that can be used to construct a homomorphism into a much smaller, reduced multigraph, from which shortest permutation routes can be recovered. In a particularly striking example, a fully connected network of 16 chips and 4 bus lines, involving 1:0 10 17 permutations (nodes of the Cayley graph), is reduced to a computation on a graph with only 3;950 nodes. A new group-theoretic characterization of the redundant edges of that multigraph is then presented, and experimental results are given. The improved computation time is roughly proportional both to the factor of reduction in the number of nodes and the factor of reduction in the number of edges. Generalizations to other interconnection networks are also discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Permutation routing via Cayley graphs with an example for bus interconnection networks

Cayley graphs have been used extensively to design interconnection networks and provide a natural setting for studying point-to-point routing [1, 2, 3, 5, 6, 7, 12]. The extension of these techniques to the more important problem of permutation routing on interconnection networks presents fundamental problems. This is due to the potentially explosive growth in both the size of the graph and the...

متن کامل

Cayley graph connected cycles: A new class of fixed-degree interconnection networks

We introduce a new class of fixed-degree interconnection networks, called the Cayley graph connected cycles , which includes the well known cube-connected cycles as a special case. This class of networks is shown to be vertexsymmetric and maximally fault tolerant (if the given Cayley graph is maximally fault tolerant). We propose simple routing and broadcasting algorithms for these networks in ...

متن کامل

Computer Science Technical Report A New Family of Cayley Graph Interconnection Networks of Constant Degree Four

We propose a new family of interconnection networks that are Cayley graphs with constant node degree 4. These graphs are regular, have logarithmic diameter and are maximally fault tolerant. We investigate different algebraic properties of these networks (including fault tolerance) and propose optimal routing algorithms. As far as we know, this is the first family of Cayley graphs of constant de...

متن کامل

Crosstalk-free Rearrangeable Multistage Interconnection Networks

In this paper, the notion of crosstalk-free rearrangeability (CFrearrangeability) of multistage interconnection networks (MINs) is formally defined. Using the concept of line digraphs from graph theory, we show that the problem of crosstalk-free routing on any bit permutation network (BPN) is always equivalent to the classical permutation routing problem on a BPN of smaller size and with fewer ...

متن کامل

Efficient Routing in Data Center with Underlying Cayley Graph

Nowadays data centers are becoming huge facilities with hundreds of thousands of nodes, connected through a network. The design of such interconnection networks involves finding graph models that have good topological properties and that allow the use of efficient routing algorithms. Cayley Graphs, a kind of graphs that represents an algebraic group, meet these properties and therefore have bee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007